

Project insight: Clear Air Situation for UAS (CLASS)

15th November 2018 Workshop on Autonomous Aerial Vehicles, Trondheim

Krzysztof Cisek, research fellow, NTNU

About me

Krzysztof Cisek

- 2006-2011: M.Sc. (Eng.) in control engineering and robotics from the **Wrocław University of Science and Technology**, Faculty of Electronics, Wrocław, Poland.
- 2011-2014: software and robotics engineer in R&D Department in **Flytronic Sp. z o.o. (WB Group)**, leading Polish constructor and R&D center for Unmanned Aerial Vehicles and Systems for defense sector, Gliwice, Poland.
- 2014-now: research fellow and engineer at Unmanned Aerial Vehicle Laboratory (NTNU UAVlab), Autonomous Marine Operations and Systems (AMOS), Department of Cybernetics at Norwegian University of Science and Technology, Trondheim Norway.
- 2018-now: principal engineer at **Scout Drone Inspection**, Trondheim, Norway.

My research interests are in the areas of software/hardware development and integration of unmanned aerial systems, ultra wideband location systems and data fusion.

NTNU

Norwegian University of Science and Technology

NTNU AMOS

Centre for Autonomous Marine Operations and Systems

SESAR U-SPACE Vision

SESAR Joint Undertaking. (2017, June 9)

U-Space: Aiming to enable complex drone operations with a high degree of automation

CLEAR Air Situation for uaS

Tracking and Surveillance for U-Space

- Deconfliction
- Assistance for Separation management
- Dynamic Geofencing
- Protection of restricted areas

What is the concept behind CLASS

Tracking

Ass SES

A Thales company

Study Logic of CLASS

SESAR CLASS Component Technologies

CLASS Trial Visitor Day 18th October 2018

Independent Non-cooperative Surveillance (INCS) - Radar

Overcoming the challenge of detecting drones SES

Gamekeeper 16U - Target centric view SES

Highly congested space

Gamekeeper – Real Data

Without Classification

Gamekeeper – Real Data

With Classification

Gamekeeper Tracker Performance

Cooperative Surveillance System (CSS)

Drone-it!

Service for any Flying object

- From big aircraft up to drones
- Tracking and monitoring
- **30 bytes** messages
- Truly global coverage
- Encryption
- Dedicated band (~ 200 kHz)

Terminal

- Credit-card size
- Include GPS and accelerometer
- 1 GPS cold fix ~ 250 μ A.h
- 1 msg transmit ~ 20 μ A.h

Telecom infrastructure

- Existing GEO satellites
- Ground stations for dense areas
- Integrated Network
- Single customer interface

Performances

- Distance > 10 km
- > 100 drones per second
- Latency 2s so far

Track Fusion D NTNU

Track Fusion D NTNU

IOINT UNDERTAKING

CLASS SESAR JOINT UNDERTAKING

Screen-shot from video which was here.

SESAR CLASS Realtime UTM system

Unifly introduction

Unifly introduction

Multiple customer UTM deployments

Display guidelines for the multiple stakeholders -> drone pilots

- Should be very user intuitive, with small learning curve
- Easy accessible

Display guidelines for the multiple stakeholders -> Authority

- Should be recongizable ATC screen => ANSP
- But should be configurable to enable User-friendly screens for other authorities => Police
- Both 2D and 3D availability

Configurable map layers

Different base maps

Interface from Real Time Data Collector via Asterix cat 129

Contains 4 streams (We can differentiate on these sources)

- Drone-IT
- Aveillant
- Paparazzi
- Fused

SESAR CLASS Live Experiments

CLASS Live Experiments

Real-time operation

Trial Site

Ex-RAF Airfield, Deenethrope

Trial Dates

October 15th – 19th 2018

Trial Equipment

- Aveillant: Gamekeeper 16U
- ENAC: Fixed wing sUAS
- Airbus: Drone- it!
- Unifly: UTM

Dr@ne-it!

Live Flights

Drones

Drone Operators

Ground Truth Crew

Screen-shot from video which was here.

Scenario ID	Scenario Name
CLASS_DS _1	GNSS failure leading to intrusion in an airport
CLASS_DS_2	conflicts in an emergency situation (2 drones)
CLASS_DS_3	Aerial work near high voltage lines
CLASS_DS_4	Drone ILS Calibration (2 drones)
CLASS_DS_5	Gliding rogue drone
CLASS_DS_6	Urban pollution sampling

CLASS Scenarios

Aerial work near high voltage lines – CLASS_DS_3

CLASS_SC_3 - Aerial work on high voltage lines

Aerial work near high voltage lines – CLASS_DS_3

(1) Drone moving to PHOTOGRAPHY point (2) Drone moved to HOLD to deconflict with manned aircraft (3) Drone eventually cleared to land

CLASS SES

This project has received funding from the SESAR Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No [763719]

The opinions expressed herein reflect the author's view only.

Under no circumstances shall the SESAR Joint Undertaking be responsible for any use that may be made of the information contained herein.