UK Perspective

Norwegian Forum for Autonomous Ships

James Fanshawe CBE Chairman UK MASRWG 15 June 2017

Maritime Autonomous Systems Capabilities

- Commercial operations
 - Maritime Transport
- Oil and Gas
- Marine Scientific Research
 - Marine Survey
 - Passive acoustic monitoring
 - Offshore research
 - Deep sea mining
 - Fishing and aquaculture
- Underwater asset management
- Defence operations
- Maritime and Border Security
- Communications Relay

Maritime Autonomous Surface Ships (MASS)

Yara Birkeland

Unmanned Underwater Vehicles and Remotely Operated Vehicles

Unmanned Air Systems at Sea

The Maritime Environment UK Marine Alliance

- Life at sea is 3D
 - Above, On and Below the waves
- Well established order for:
 - Navigational safety
 - Air safety and airspace management
 - Water space management below the waves
- Maintaining the status quo wherever possible for all manned and unmanned craft using existing principles, laws, rules and regulations is critical.
 - Principle of 'Equivalence'

UK Marine Industry Priorities

1. Whole-vessel integration to deliver more affordable and optimised running with reduced staff and minimised through-life costs.

2. Design, integration, manufacture and operation of autonomous vessels and systems.

3. Design, manufacture and refit of superyachts, high end powerboats and high-end sailing yachts.

4. Extended use of composites and other novel materials.

5. Design and manufacture of specialist vessels for support of the offshore energy and naval sectors.

6. Through-life operation and equipment insertion (including refits and conversions) to improve vessel efficiency.

7. Decision support systems – including integrated voyage optimisation to deliver just-in-time arrival at port at lowest cost, secure situational awareness and next-generation command and control systems.

Roadmap 2015 Areas for investment

- 1. Design and manufacturing techniques
- 2. Electronics, sensors, communications and control
- and data management
- 3. Energy efficiency and environmental protection
- 4. Structures and materials

5. Autonomous systems

Autonomous capability is fundamental to both the design of autonomous vessels and decision support systems.

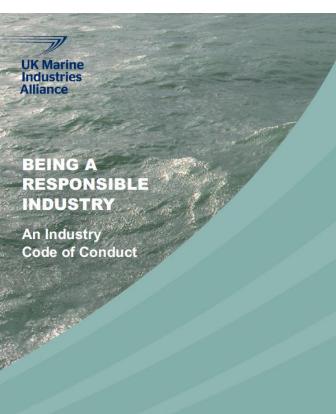
Investment required in: developments in safety, reliability, endurance, communications and regulatory aspects leading to full individual vessel autonomy, with common underlying information architecture standards

MASS Safety

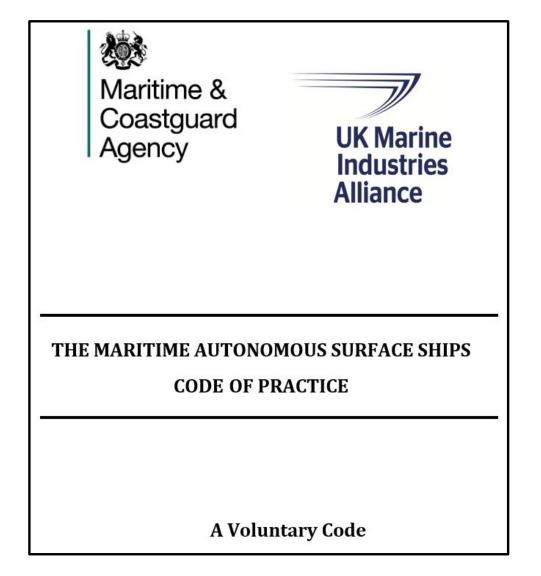
- Responsible Ownership
- Safe Operation
- Recognised Accreditation, Training and Standards
- Effective Integration into the Maritime domain

MASS Regulation Challenges

- Harmonised Definitions
- Application
- Common Standards
- International Consensus
- Flexibility, Innovations & Mutual Trust
- Legal Precedents
- Education of Mariners


Industry Codes

- Pan industry agreement on aspects of MASS development, design, production and operation
- Best practice
- Assurance
- Safety and professionalism
- Training, conduct and personal responsibility
- Compliance and Self-regulation
- Improved communications within the industry and the wider maritime community


Code of Conduct

Maritime Autonomous Systems (Surface) MAS(S)

Published March 2016

Code of Practice

Code of Practice Chapters

- Foreword
- Definitions
- Application
- Operations
- Vessel Design and Manufacturing Standards
- Navigation lights, shapes and sound signals
- Situational awareness and control
- System integrity test and certification procedures
- **RF Communication systems**

Code of Practice Chapters

- Operator standards of training, competence and watchkeeping
- Base control station operation
- Registration, Certification, Examination, Maintenance And Record-keeping
- Security
- Prevention of pollution
- Carriage and transfer of cargoes (including dangerous goods)
- Safety management
- Rendering of Assistance to Persons in Distress at Sea
- Glossary

Lloyds Register

Foresight review of robotics and autonomous systems

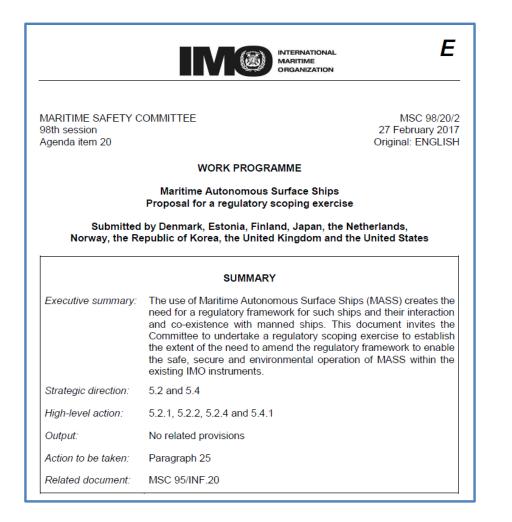
There's a revolution. Smart, connected machines are acting as tools to support us, working alongside us or alone, making independent decisions and even learning.

ShipRight Design and Construction

Additional Design Procedures

LR Code for Unmanned Marine Systems

February 2017


Working together for a safer world

International Dimension

- IMO Instruments
 - International Regulations for the Prevention of Collisions at Sea (COLREGS)
 - Marine Pollution (MARPOL)
 - Safety of Life at Sea (SOLAS)
 - Standards of Training Certification and Watchkeeping (STCW)
- IMO Interaction
 - Short INF Paper MSC 95, June 2015
 - IMO lunchtime brief MSC 96, May 2016
 - Proposal for a Scoping Exercise at MSC 98 June 2017
- Liaisons with International Partners and Organisations

IMO Submission

Discussion James Fanshawe CBE james.fanshawe@ukmarinealliance.co.uk +44 7769 702031

www.ukmarinealliance.co.uk/MAS

www.autonautusv.com

MASS Ship Classes

The UK Code of Practice identifies several classes of Unmanned Surface Vessel, based on the intended use, size, speed and potential hazard to other shipping.

- Ultralight Unmanned Surface Vessels are USV that have all of the following properties :
 - Length overall <7m, mass < 1000kg and maximum operating speed <4 kts.
- Light Unmanned Surface Vessels are USV that have all of the following properties :
 - Length overall <12m, Mass <8000kg and maximum operating speed < 7 kts
- Small Unmanned Surface Vessels are those USV that have all of the following characteristics :
 - Length overall 24m or less, Mass < 250te, maximum operating speed< than that for a High Speed USV and where overall Kinetic Energy is <4000kNm
- Large Unmanned Surface Vessels are USV of >24m and / or > 100 GT displacement
- High-speed Unmanned Surface Vessels are USV for which operating speed is not less than :
 - V = 7,19 ∇1/6 knots

where

 ∇ = moulded displacement, in m3, of the craft corresponding to the design waterline.