

SAREPTA PROJECT - RISK ASSESSMENT AND RISK ACCEPTANCE IN AUTONOMOUS TRANSPORT

Åsa Snilstveit Hoem – asa.s.hoem@sintef.no NFAS, 15. juni 2017

Agenda

- Motivation
- The Sarepta project
- Definitions: Risk, Risk acceptance, Risk assessment
- Exploration of cases
- Furher work

Motivation - Autonomous transport

- I. Road: Safety reduce number of accidents by 50% and support more efficient transport..
- II. Rail: Safety (Experience high safety), efficiency
- III. Air: Reduce risk in operation, (but in Drones 50 to 100 more accidents than manned flights due to poor Human Factors)

Maritime Air Road Rail

Need for development of new methods

 Most safety analysis tools are all 40-60 years old. Our technology is very different today

SAREPTA (2017-2020; 8.9 mill. NOK, incl. PhD; Transport 2025) Safety, autonomy, remote control and operations of industrial transport systems

- A. Risk identification and risk levels
- **B.** Vulnerabilities and threats
- C. Technical, human and operational barriers
- D. Organizational and human factors, and regulatory measures for risk mitigation

Maritime Air Rail Road

SINTEF

SAREPTA

Key objective:

provide necessary knowledge for the development of improved methods for risk assessments and mitigation in transport systems that are autonomous, remotely controlled and/or periodically unmanned.

<u>**Goal</u>**: contribute to systematizing and expanding the knowledge related to risk level, vulnerabilities, possible barriers and the need for novel, more integrated, regulatory approaches.</u>

Definitions

• Risk

- Traditional analytic context: **Probability * consequences**
- ISO 3100 (2009): Risk = effect of uncertainty on objectives
- PSA (2016): Risk = the <u>consequences</u> of an activity with the <u>associated uncertainty</u>
- Risk assement
 - the overall process of risk identification, risk analysis and risk evaluation (ISO31010:2009)

• Risk acceptance

- Criteria used as a basis for decisions about acceptable risk
- Individual and Societal

\rightarrow How to move to ALARP and ACCEPTABLE RISK?

Origins – Paradox of Almost Totally Safe Systems (René Amalberti)

		Three contra	sting approac	hes to safety		
Ultra adaptive Embracing risk Innovative medicine Trauma centers		High rel Managing	High reliability Managing risk		Ultra safe Avoiding risk	
		Scheduled surgery Chronic care		Anaesthesiology ASA	1 Radiotherapy Blood transfusion	
Hymalaya suntaineoring	Finance		Fire fighting	Chartered flight	Civil aviation	
Forces, war time		Drilling industry		Processing industry	Railwaya	
Professional fishing		Chemical industry (new)		Nuclear industry		
29	10-2	10-3	10-4	10-5	10-6	
Verv unsafe		Unsaf	e Sa	fe U	ltra safe	

Vincent, C., & Amalberti, R. (2016). Safer healthcare. Cham: Springer International Publishing

Origins – Paradox of Almost Totally Safe Systems (René Amalberti)

Three contrasting approaches to safety								
Ultra adaptive Embracing risk	High reliab Managing ris	High reliability Managing risk Scheduled surgery Chronic care		Ultra safe Avoiding risk				
Innovative medicine Trauma centers	Sch			Radiotherapy Blood transfusion				
Hymalaya Finance ountaineering	Fire	Fire fighting		Civil aviation				
Forces, war time	Orilling Industry		Pricessing industry	Railways				
Professional fishing		Chemical industr	y (total)	Nuclear industry				
10-2	10-3	10-4	10-5	10- 6				
Very unsafe	Unsafe Sa		fe U	ltra safe				

Vincent, C., & Amalberti, R. (2016). Safer healthcare. Cham: Springer International Publishing

A Timeline of the Development of Methods for Complex Systems and Safety*

Learning from accidents – complex Can autonomy help?

() SINTEF

Source: EK Monitoring & Automation Questionnaire (326 Pilots : 145 Captains & 161 FO's)

Learning from incidents and recoveries

Road:

- Waymo's human drivers had to take control from the automated system (called "disengagement") once for every 5,000 miles its cars in 2016. (– are you awake then?)
- Backup human drivers in Uber's self-driving cars had to take over about once every mile

Challenges:

- Human in control ensure autonomy supports "Human in the loop" based on human capabilities?
- Autonomy based on human intervention when needed sensemaking in crisis? (99% boredom and 1% panic)

() SINTEF

¹⁴ • Full autonomy – how to test and ensure resilience (i.e. go to safe and secure condition)

Steps to identify risks and mitigate?

- Learn between different areas Maritime, Air, Road, Rail
 - Gather empirical data

• Prototype and Test, test, test...in restricted, small and large areas

- Develop methods and new approaches
 - Handling of emergence and the unanticipated

SAREPTA – we need cases

Initial cases:

- Sea: MilliAmpere (Plaske) Astat data collection (with Maritime Robotics)
- Air: Transportation by drones
- Railway/Subway: Oslo T-bane; Metro København
- Road:
 - St. Olav automated in-house logistics systems (> 10 years experience)
 - Acondo: Bus Trondheim harbor to city center, Snow plowing at Gardemoen
 - SmartFeeder
- Activities:
 - Litterature study Interviews
 - Data collection

- Cooperation with Human Automation Lab at Duke University

Questions – comments – Cases

Teknologi for et bedre samfunn