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Kinematics

• Mathematical model of physical world using
– Point, represents a position/particle (affine space)
– Vector, represents a direction and magnitude (vector space)
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Coordinate frame

• One point (representing position)
• Three basis vectors (representing orientation)

→ 6 degrees of freedom
→ Can represent a rigid body

A
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Important coordinate frames

Frame symbol Description

I Inertial

E Earth-fixed

B Body-fixed

N North-East-Down (local level)

L Local level, wander azimuth (as N, 
but not north-aligned => nonsingular)
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Local level frames

longitude, latitude, wander azimuth
,      roll, pitch, yaw

ELR

LBRNBR

B

Frame 
symbol Description

N North-East-Down (local 
level)

L

Local level, wander 
azimuth (as N, but not 

north-aligned => 
nonsingular)

North Pole

outh Pole

Prime meridian
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General vector notation

Coordinate free vector (suited for expressions/deductions):

Sum of components along the basis vectors of E (                              ):

x

i
E

j

k

x
x
x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x

, , ,i E i j E j k E kx x b x b x b= + +

, , ,, ,E i E j E kb b b

xk

E
xjxi

,E ib

,E jb

,E kb

x

Vector decomposed 
in frame E (suited 
for computer 
implementation):
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Notation for position, velocity, acceleration

Symbol Definition Description

Position vector. A vector whose length and direction is 
such that it goes from the origin of A to the origin of B.
Generalized velocity. Derivative of       , relative to 
coordinate frame C.
Standard velocity. The velocity of the origin of 
coordinate frame B relative to coordinate frame A. (The 
frame of observation is the same as the origin of the differentiated position vector.) 
Note that the underline shows that both orientation and position of A matters 
(whereas only the position of B matters)

Generalized acceleration. Double derivative of       , 
relative to coordinate frame C.

Standard acceleration. The acceleration of the origin of 
coordinate frame B relative to coordinate frame A.

ABp B A−

C
ABv ( )

C

AB
d p
dt

ABv A
ABv

C
ABa

( )
( )

2

2

C

AB
d p
dt

ABa A
ABa

ABp

ABp
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Notation for orientation and angular 
velocity

Symbol Definition Description

Angle-axis product. is the axis of rotation and       
is the angle rotated.

(to be 
published)

Standard rotation matrix. Mostly used to store 
orientation and decompose vectors in different frames,          

. 
Notice the “rule of closest frames”.

(to be 
published)

Angular velocity. The angular velocity of coordinate 
frame B, relative to coordinate frame A.

ABθ AB ABk ⋅β ABk ABβ

ABR A B
AB=x R x

ABω
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Navigation

Navigation:
Estimate the position, orientation and velocity of a vehicle

Inertial navigation:
Inertial sensors are utilized for the navigation
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Inertial Sensors

Based on inertial principles, acceleration and angular velocity are 
measured. 

• Always relative to inertial space
• Most common inertial sensors: 

– Accelerometers
– Gyros
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Accelerometers (1:2)

By attaching a mass to a spring, measuring its deflection, we get a 
simple accelerometer. 

Figure: Gade (2004)

– To improve the dynamical interval and linearity and also 
reduce hysteresis, a control loop, keeping the mass close to 
its nominal position can be applied.
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Accelerometers (2:2)

• Gravitation is also measured (Einstein's principle of equivalence)

• Total measurement called specific force,

• Using 3 (or more) accelerometers we can form a 3D specific force
measurement:

This means: Specific force of the body system (B) relative inertial space (I), decomposed in 
the body system.

Good commercial accelerometers have an accuracy in the order of 50 μg.

B
IBf

gravitation
IB IB B IB

F
f a g a

m
= − = −
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Gyros (1:3)

IBω

Figure: Caplex (2000)

• Maintain angular momentum (mechanical 
gyro). A spinning wheel will resist any change in 
its angular momentum vector relative to inertial 
space. Isolating the wheel from vehicle angular 
movements by means of gimbals and then 
output the gimbal positions is the idea of a 
mechanical gyro.

Gyros measure angular velocity relative inertial space:

Principles:
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Gyros (2:3)

Figure: Bose (1998)

• The Sagnac-effect. The inertial characteristics of light can also be utilized, by 
letting two beams of light travel in a loop in opposite directions. If the loop 
rotates clockwise, the clockwise beam must travel a longer distance before 
finishing the loop. The opposite is true for the counter-clockwise beam. 
Combining the two rays in a detector, an interference pattern is formed, which 
will depend on the angular velocity.

The loop can be implemented with 
3 or 4 mirrors (Ring Laser Gyro), or 
with optical fibers (Fiber Optic 
Gyro).
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Gyros (3:3)

• The Coriolis-effect. Assume a mass that is 
vibrating in the radial direction of a rotating 
system. Due to the Coriolis force working 
perpendicular to the original vibrating 
direction, a new vibration will take place in 
this direction. The amplitude of this new 
vibration is a function of the angular velocity. 
MEMS gyros (MicroElectroMechanical
Systems), “tuning fork” and “wineglass” gyros 
are utilizing this principle. 
Coriolis-based gyros are typically cheaper
and less accurate than mechanical, ring laser 
or fiber optic gyros.

Tine 
radial 
vibration 
axis

Figure: Titterton & Weston (1997)
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IMU

Several inertial sensors are often assembled to form an Inertial 
Measurement Unit (IMU).

• Typically the unit has 3 accelerometers and 3 gyros (x, y and z).

In a strapdown IMU, all inertial sensors are rigidly attached to the unit (no 
mechanical movement).

In a gimballed IMU, the gyros and accelerometers are isolated from 
vehicle angular movements by means of gimbals.



Kenneth Gade, FFI Slide 19

Example (Strapdown IMU)

Honeywell HG1700 ("medium 
quality"):

• 3 accelerometers, accuracy: 1 mg 
• 3 ring laser gyros, accuracy: 1 deg/h 
• Rate of all 6 measurements: 100 Hz

Foto: FFI
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Inertial Navigation

An IMU (giving       and       ) is sufficient to navigate relative to inertial 
space (no gravitation present), given initial values of velocity, position
and orientation:

– Integrating the sensed acceleration will give velocity.
– A second integration gives position.
– To integrate in the correct direction, orientation is needed. This is 

obtained by integrating the sensed angular velocity.

ω IB
BfIB

B



Kenneth Gade, FFI Slide 21

Terrestrial Navigation

In terrestrial navigation we want to navigate relative to the Earth (E). 
Since earth is not an inertial system, and gravity is present, the inertial 
navigation becomes somewhat more complex:

• Earth angular rate must be compensated for in the gyro 
measurements:

• Accelerometer measurement compensations:
– Gravitation
– Centrifugal force (due to rotating Earth)
– Coriolis force (due to movement in a rotating frame)

B B B
EB IB IE= −ω ω ω
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Navigation 
Equations

Strapdown IMU, wander 
azimuth Local 
system (L), spherical 
earth. Not included: 
vertical direction, 
gravity calculation.
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Inertial Navigation System (INS)
The combination of an IMU and a computer running navigation equations is 

called an Inertial Navigation System (INS).

Due to errors in the gyros and accelerometers, an INS will have unlimited drift in 
velocity, position and attitude.

The quality of an IMU is often expressed by expected position drift per hour (1σ). 
Examples (classes):

– HG1700 is a 10 nautical miles per hour IMU.
– HG9900 is a 1 nautical mile per hour IMU.

Navigation 
Equations

Navigation 
Equations

Gyros

Accelero-
meters

Velocity,

Angular 
velocity,

Specific 
force,

INS

IMU

Attitude,         or roll/pitch/yaw

Depth,  z

Horizontal 
position,

B
IBf

B
IBω

En

L
EBv

LBR

or longitude/ 
latitude
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Categorization:
IMU technology and IMU performance

Class Position
performance

Gyro 
technology

Accelerometer
technology

Gyro bias Acc bias

Control 
system

NA Coriolis MEMS 10 - 1000°/h 10 mg

”Military
grade”

1 nmi / 24 h ESG, RLG, 
FOG

Servo
accelerometer

< 0.005°/h < 30 µg

Navigation 
grade

1 nmi / h RLG, FOG Servo
accelerometer,
Vibrating beam

0.01°/h 50 µg

1 mg

1 mg

Tactical
grade

> 10 nmi / h RLG, FOG Servo
accelerometer,
Vibrating beam, 
MEMS

1°/h

AHRS NA MEMS, RLG, 
FOG, Coriolis

MEMS 1 - 10°/h
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Aided inertial navigation system

To limit the drift, an INS is usually 
aided by other sensors that 
provide direct measurements of 
the integrated quantities.

Examples of aiding sensors:

Sensor: Measurement:

Pressure meter Depth/height

Magnetic compass Heading

Doppler velocity log (or         , water)

GPS (Doppler shift)

Underwater 
transponders

Range from known 
position

GPS

Multi-antenna GPS Orientation

B
EBv

E
EBv

pEB
E

B
WBv
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Sensor error models

Typical error models for IMU, Doppler velocity log and others:
• white noise
• colored noise (1st order Markov)
• scale factor error (constant)
• misalignment error (constant)
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Kalman Filter

A Kalman filter is a recursive algorithm for estimating states in a system. 
Examples of states:
– Position, velocity etc for a vehicle
– pH-value, temperature etc for a chemical process

Two sorts of information are utilized:
• Measurements from relevant sensors
• A mathematical model of the system (describing how the different 

states depend on each other, and how the measurements depend on 
the states)

In addition the accuracy of the measurements and the model must be 
specified.
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Kalman Filter Algorithm
Description of the recursive Kalman filter algorithm, 

starting at t0:
1. At t0 the Kalman filter is provided with an initial estimate, including its 

uncertainty (covariance matrix).
2. Based on the mathematical model and the initial estimate, a new 

estimate valid at t1 is predicted. The uncertainty of the predicted estimate
is calculated based on the initial uncertainty, and the accuracy of the 
model (process noise).

3. Measurements valid at t1 give new information about the states. Based 
on the accuracy of the measurements (measurement noise) and the 
uncertainty in the predicted estimate, the two sources of information are 
weighed and a new updated estimate valid at t1 is calculated. The 
uncertainty of this estimate is also calculated. 

4. At t2 a new estimate is predicted as in step 2, but now based on the 
updated estimate from t1. 

. . .
The prediction and the following update are repeated each time a new 

measurement arrives.

If the models/assumptions are correct, the Kalman 
filter will deliver optimal estimates.
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Kalman Filter Design for Navigation

Objective: Find the vehicle position, attitude and velocity with the best 
accuracy possible

Possible basis: 
– Sensor measurements (measurements)
– System knowledge (mathematical model)
– Control variables (measurements)

We utilize sensor measurements and knowledge of their behavior (error 
models).

This information is combined by means of an error-state Kalman filter.
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Example: HUGIN

DGPS: Differential Global 
Positioning System

HiPAP: High Precision 
Acoustic Positioning 

DVL: Doppler Velocity Log
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Measurements
To make measurements for 

the error-state Kalman filter 
we form differences of all 
redundant information.
This can be done by 
running navigation 
equations on the IMU-data, 
and compare the outputs 
with the corresponding 
aiding sensors.

The INS and the aiding 
sensors have 
complementary 
characteristics.

Sensor Measurement Symbol

IMU Angular velocity, specific force

DGPS/HiPAP Horizontal position
measurement

Pressure
sensor Depth

DVL
AUV velocity (relative the
seabed) projected into the body
(B) coordinate system

Compass Heading (relative north)

ω IB
B

IB
B, f

pEB
E

B
EBv

ψ north
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Aided Inertial Navigation System

Based on the measurements and sensor error models, the Kalman filter 
estimates errors in the navigation equations and all colored sensor 
errors.

 

 
 
 
 
 
 
 
 
 
 

 
Navigation 
Equations

Gyros 

Accelero-
meters 

 
 
 
 
 

 
 

Error state 
Kalman 

filter 

VelocityAngular 
velocity 

Specific 
force 

INS 

IMU 

Compass

Position 
measurement 

_

_

_Attitude

Depth

_

Velocity 
measurement 

Smoothed 
Estimates

Reset 

Horizontal 
position

 

Optimal 
Smoothing

KF  
Estimates

Depth 
measurement 
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Optimal Smoothing

Smoothed estimate: Optimal estimate based on all logged measurements 
(from both history and future) 

Smoothing gives:
– Improved accuracy (number of relevant measurements doubled)
– Improved robustness
– Improved integrity
– Estimate in accordance with process model

First the ordinary Kalman filter is run through the entire time series, saving all estimates and covariance 
matrices. The saved data is then processed recursively backwards in time using an optimal smoothing 
algorithm adjusting the filtered estimates (Rauch-Tung-Striebel implementation).
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Practical navigation processing

Any vehicle with an IMU and some aiding sensors, can use the AINS to 
find its position, orientation and velocity.

Typical implementation: 

Sensors

Real-time 
navigation 
(Kalman 

filter)

Guidance & 
control

Hard disk

Pos, orientation, 
velocity

Control 
signals

Post-processed 
navigation 

(smoothing)

Pos, orientation, 
velocity

Vehicle:

• Real-time navigation
• Post-processed navigation Geo-referencing 

recorded data (e.g. 
map making)

Post mission 
download
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NavLab
NavLab (Navigation Laboratory) is one common tool for solving a variety 

of navigation tasks.

Simulator (can be replaced by 
real measurements)

Estimator (can interface with 
simulated or real measurements)

Trajectory 
SimulatorTrajectory 

Simulator

IMU Simulator

Position 
measurement 

Simulator

Depth 
measurement 

Simulator

Velocity 
measurement 

Simulator

Compass 
Simulator

Navigation 
EquationsNavigation 

Equations

Make Kalman 
filter 

measure-
ments

(differences)

Error state 
Kalman filterError state 

Kalman filter

Optimal 
SmoothingOptimal 

Smoothing

Filtered 
estimates 

and 
covariance 
matrices

Smoothed 
estimates 

and 
covariance 
matrices

Development started in 
1998

Main focus during 
development:

– Solid theoretical 
foundation 
(competitive edge)

Structure:
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Simulator

• Trajectory simulator
– Can simulate any trajectory 

in the vicinity of Earth
– No singularities

• Sensor simulators
– Most common sensors with 

their characteristic errors are 
simulated

– All parameters can change 
with time

– Rate can change with time

Figure: NavLab
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NavLab Usage
Main usage:
• Navigation system research and development
• Analysis of navigation system
• Decision basis for sensor purchase and mission planning
• Post-processing of real navigation data
• Sensor evaluation 
• Tuning of navigation system and sensor calibration

Users: 
• Research groups (e.g. FFI (several groups), NATO Undersea Research 

Centre, QinetiQ, Kongsberg Maritime, Norsk Elektro Optikk)
• Universities (e.g. NTNU, UniK)
• Commercial companies (e.g. C&C Technologies, Geoconsult, FUGRO, 

Thales Geosolutions, Artec Subsea, Century Subsea)
• Norwegian Navy

Vehicles navigated with NavLab: AUVs, ROVs, ships and aircraft

For more details, see www.navlab.net

http://www.navlab.net/
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Initial alignment (gyrocompassing)

Basic problem:
Find the orientation of a vehicle (B) relative to Earth (E) by means of an 

IMU and additional knowledge/measurements

Note: An optimally designed AINS inherently gyrocompasses optimally. 
However, a starting point must be within tens of degrees due to 
linearizations in the Kalman filter => gyrocompassing/initial alignment 
is treated as a separate problem.

Solution: Find Earth-fixed vectors decomposed in B. One vector gives 
two degrees of freedom in orientation.

Relevant vectors:
• Gravity vector
• Angular velocity of Earth relative to inertial space,      IEω
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Finding the vertical direction (roll and 
pitch)

Static condition: Accelerometers measure gravity, thus roll and pitch are 
easily found

Dynamic condition: The acceleration component of the specific force 
measurement must be found (                      )

=> additional knowledge is needed

The following can give acceleration knowledge:
• External position measurements
• External velocity measurements
• Vehicle model

B B B
IB IB B= −f a g
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Finding orientation about the vertical 
axis: Gyrocompassing

Gyrocompassing: The concept of finding orientation about the vertical 
axis (yaw/heading) by measuring the direction of Earth's axis of
rotation relative to inertial space
– Earth rotation is measured by means of gyros

IEω
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Gyrocompassing under static condition

Static condition (             ):
A gyro triad fixed to Earth will measure 
the 3D direction of Earth's rotation axis 
(               ) Figure assumes x- and y-gyros in 

the horizontal plane:

– To find the yaw-angle, the down-direction 
(vertical axis) found from the 
accelerometers is used. 

– Yaw will be less accurate when getting 
closer to the poles, since the horizontal 
component of        decreases 
(1/cos(latitude)). At the poles        is 
parallel with the gravity vector and no 
gyrocompassing can be done.

y-gyro axis
yaw

x-gyro axis (vehicle 
heading)

z-gyro axis

y-gyro measurement

z-gyro measurement

North

Earth's axis of rotation

x-gyro measurement
B Latitude

0EBω =

B B
IB IE=ω ω

IEω
IEω



Kenneth Gade, FFI Slide 45

Gyrocompassing under dynamic 
conditions (1:2)

Dynamic condition:
• Gyros measure Earth rotation + vehicle rotation,
• Challenging to find       since        typically is several orders of 

magnitude larger

B B B
IB IE EB= +ω ω ω

B
IEω B

EBω
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Gyrocompassing under dynamic 
conditions (2:2)
Under dynamic conditions gyrocompassing can be performed if we know 

the direction of the gravity vector over time relative to inertial space.
– The gravity vector will rotate about Earth's axis of rotation:

gravity vector at t
= 0 hours

gravity vector at t 
= 12 hours

Earth's axis of rotationFigure assumes zero/low 
velocity relative to Earth. 

The change in gravity direction due to 
own movement over the curved 
Earth can be compensated for if 
the velocity is known (4 m/s
north/south => 1˚ error at lat 60˚)
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AINS demonstration - simulation 
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Position

Posm white (1σ): 3 m
Posm bias (1σ): 4 m
Tbias: 60 s
Posm rate: 1/60 Hz
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Smoothed estimate

Figure: NavLab
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Position estimation error

Figure: NavLab
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Attitude
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Attitude estimation error
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AINS demonstration - real data

• Data from Gulf of Mexico
• Recorded with HUGIN 3000
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Position (real data)
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Figure: NavLab
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USBL wildpoint (outlier)
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same object repeatedly
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1300 m depth:
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Navigating aircraft with NavLab
• Cessna 172, 650 m height, much turbulence
• Simple GPS and IMU (no IMU spec. available)

Line imager data Positioned with NavLab (abs. accuracy: ca 1 m verified)
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Conclusions

• An aided inertial navigation system gives: 
– optimal solution based on all available sensors
– all the relevant data with high rate

• If real-time data not required, smoothing should always be used to 
get maximum accuracy, robustness and integrity
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Extra slides
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Typical sensor/method for the 6 DOF and velocity

Horizontal position:
• Range from known positions (GPS, underwater transponders, etc)
• Terrain navigation

Vertical position:
• Pressure sensor
• Range from known positions (GPS, underwater transponders)

Velocity:
• Acoustic Doppler velocity log (DVL)
• GPS Doppler shift

Heading:
• Magnetic compass
• Gyrocompassing
• DVL+ position measurements (velocity required)
• IMU + position/velocity in E (acceleration required)
• Multi-antenna GPS

Roll, pitch:
• IMU + g-vector
• Multi-antenna GPS
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The different outputs

• Measurement  (from aiding sensor)
– low rate
– high frequency errors
– stable

• Navigation Equations
– high rate
– very good at high frequencies
– unlimited drift

• Real time Kalman filter
– desired rate
– small jumps due to unexpected measurements

• Smoothed estimate
– desired rate
– in accordance with process model
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